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SUMMARY

Numericadl models for groundwater flow and transport on a regiond scde require the
assgnment of hydraulic parameters to grid blocks of a dze lager than typica scaes of
avalable field data Mogt naturd formations are heterogeneous with hydraulic properties
varying on a multiplicity of scdes.  This difference in scdes is often handled by using effective
(upscded) parameters. Here we investigate the problem of upscding hydraulic conductivity
and transmissvity from the smal scade of measurement to the larger scale of a grid block by
means of stochadtic averaging and perturbation anayss. We gdart by deriving the datigtics of a
random tranamissvity fidd from that of a conductivity fied, and proceed by edablishing the
relationship between effective conductivity and transmissvity derived from the same data s&t.

1. INTRODUCTION

Modds for interpreting experimental data usually assume that, at leest on a measurement scale,
flow tekes place in a homogeneous environment. Under this assumption, hydraulic
conductivity K(x) represents a quantity averaged over some support volume w; centered
around point x. If the support volume w; is comparable to an aguifer thickness, B, then the
trasmissvity associated with this support volume is defined as BK. However, K is usudly
associated with much smdler measurement volumes, and loca transmissvity of heterogeneous
formationsis defined as a verticd average,
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Effective, or up-scded, parameters are often used for numerical modeling of groundweter flow
and trangport in  heterogeneous aquifers. Such modes require assgning hydraulic
conductivities or tranamissvities to large grid-blocks, while experimentd data are usudly
avalable a a much smdler scae of core or wdl-log measurements. These parameters can be
obtained by sandard inverse methods [1] or, dternatively, by <tochastic averaging of the
corresponding flow equations [2, 3]. In this paper we pursue the latter strategy.

We edablish the reationship between effective (up-scaded) hydraulic conductivity, Kef, and
transmissvity, Tes, for randomly heterogeneous confined formations. We show that, when T
and K ae defined on different support scdes, the traditiond definition of effective



tranamisavity, Ter© BKer, fals unless a medium is mildly heterogeneous and exhibits a lack
of the verticd spaid corrdation. To smplify the mathematica developments, we congder
steady-date flow in the verticd cross-section (X1, X3). Generdizing the obtained results to
trandent flow scenarios can be readily accomplished by following Tartakovsky and Neuman

[4].
2. TRANSMISSIVITY STATISTICS

Following standard practice in stochagtic hydrogeology [5 - 7], we assume that log hydraulic
conductivity Y(x) = In K(x) forms a datidicaly homogeneous Gaussan field with congtant

mean &N and variance s’ =4&r(x) Y(X)ii and two-point Gaussian anisotropic covariance
function, Cy (X; y) = S2 1 (r)

2 _ (Xl 'Izyl) + (X3 -|2y3) 2

ry(r)=exp(-r) r

where |, and |, are the horizontd and vertica corrdation scales, respectively. Our am is to
express the tranamissvity gatisticsin terms of the satistics of Y.

It follows from (1) thet ensemble mean transmissivity, arf is given exactly by
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where Kg = exp(&K is the geometric mean of K; and the firg-order (in s?) gpproximation of
its covariance has the form,

Cr(x, ) =K&s? d‘n(r) dx, dy; +O(sy) €)
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Substituting (2) into (3) yields

Cr(ry) =K& sy a(l, Byro(r)

wherer (ry) = exp (- r,2), r2 = (x1 —y1)?/ 12, and

a(l

b el

In a smilar manner, one has the following firg-order (in sZ) goproximations of mean log
transmissivity 8Zf, geometric mean Tg = exp(&Zi), variance s 5, and correlation function r z,
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fi=In (BKg) + (1 - b)%Y
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and
s2=bs? r,(r,) =exp(-r?) r> =% (5)
respectively. Here

b(l ,)=12 [p I} erf (1 1) +exp(-12)- 1|
and!l=1,/B.

Thus congructed random fidd of log tranamissvity, Z, is dependent upon a number, |, of the
verticd corrdation scdes, |y, in the totd width, B, of an aguifer. This dependence manifests

itsdf through the correction factor b(l,). Since b <1, it falows from (5 tha the log
tranamissvity Z, as inferred from the given datisics of the log conductivity Y, exhibits smdler
goatid variation than Y. A lack of the verticad corrdation of hydraulic conductivity (ly = 0)
resultsin s = 0.

It is dear that if T is defined on a support volume w, through the spaiad averaging (1) of K
(associated with a smaler scae wi), log-normdity of K does not imply log-normdity of T.
Alternatively, if transmissvity and conductivity are defined on the same support scde, then
T = BK and log-normdlity of K aso implieslog-normdity of T.

3. EFFECTIVE TRANSMISSIVITY AND CONDUCTIVITY

Condder up-scaing of Darcy's law, q=- K Nh (g being flux and h being hydraulic heed),
from its support scale wy, to a larger grid-block, W, of length L and width B. Constant heads H;
and H, are prescribed at the boundaries x; = 0 and x; = L, respectively; while boundaries x, = 0
and xo = B ae impemeable. Under these conditions, the firg-order gpproximation of the
effective conductivity, Kei, for the two-dimensional heterogeneous grid-block, W, is given by
[2]

Keff(x) 2 el
K, N
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where G is the Green's function for the two-dimensond Laplace equetion in W subject to
gppropriate  homogeneous boundary conditions.  This expresson has been dsudied by
Paleologos et al. [2] and Tartakovsky and Neuman [3]. These authors have demonstrated that



when the dze of the doman is much larger than the corrdation scaes of the log-hydraulic
conductivity (In, Iy << L, B), one can tregt the flow domain asinfinite, which leads to K = K.

For two-dimensond flow in a verticd cross-section, defining effective tranamisavity, T, in a
gmilar manner leadsto

Ta(X),, 26L _x TGy
T ltsig kO ¥ k0= 20 5= ©)
where the one-dimensond Gr isgiven by
— L- Y1
Gr (X, Y1) =- (% - Y)HXa —w1) + L X (7)

whereH(a) = 1when a3 0 (and = 0 otherwise) is the Heavisde function.

Substituting (5) and (7) into (6) yidlds

T (C) 2 1 Jp, € ,ec 6 a- cou
=1-s5 b(c b(c) ==- —I ,eerf = ef g
T 2 b(c) ©=3-= e %ﬁa g—lhmfu

where | h=Ip / L and c=x1/L. Thus, smilar to the effective hydraulic conductivity, the
effective tranamissvity is a function of space. Figure 1 shows the dependence of b on the
normalized space coordinate ¢ for severd vauesof | .
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Figure 1. dependence of b on the normalized space coordinate ¢ for severa vauesof | 1.



The spatid variation of the effective tranamissvity increaseswith | ,. When | < 0.1,

eff s?
=1- =2 8
- ®

Subtituting (4) and (5) into (8) yilds, up to first order in s?,

Teff — 1- 2b 2
B Kg 2

Therefore, the traditiona practice of setting Ter = BKe holds true if and only if aquifers are
nearly homogeneous (s2 << 1) and the verticd corrdation scde of log-hydraulic conductivity
Is much smaller than the confined aguifer’ sthickness (I v << 1).

CONCLUSIONS

Numericd modes of groundwater flow and transport often assgn effective (upscaed)
hydraulic parameters to grid blocks of a sze larger than that of avallable fidld data To derive
such parameters, we treated hydraulic conductivity and transmissvity as log normd and
dationary random fidds. Sating from the premise that the hydraulic conductivity datigtics
are known from experimentd data, we derived a reaionship between the effective hydraulic
conductivity Ker and transmissvity T for a grid block of a confined aguifer. Mean uniform
flow conditions were imposed. This reationship demondrates that the traditional practice of
sting Ter = BKer (B being the agquifer thickness) is valid only under redtrictive conditions of
mildly heterogeneous formations with verticd corrdation scde, |y, of log hydraulic
conductivity much smaler than the thickness of a confined aguifer (I / B < 0.1).
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